This document is made possible by the generous support of the American people through the U.S. Agency for International Development. The contents are the responsibility of USP’s Promoting the Quality of Medicines program and do not necessarily represent the views of USAID or the United States Government.

About PQM

The Promoting the Quality of Medicines (PQM) program is a cooperative agreement between the U.S. Agency for International Development (USAID) and the U.S. Pharmacopeial Convention (USP). The PQM program provides technical assistance to strengthen medicines regulatory authorities and quality assurance systems and supports manufacturing of quality-assured priority essential medicines for malaria, HIV/AIDS, tuberculosis, neglected tropical diseases, and maternal and child health.

Recommended Citation

This report may be reproduced if credit is given to the U.S. Pharmacopeial Convention (USP) Promoting the Quality of Medicines (PQM) Program, Rockville, MD. Please use the following citation:

Table of Contents

Acknowledgments .. iv
Executive Summary .. 1
Key Manufacturing Challenges .. 2
Introduction .. 3
Active Pharmaceutical Ingredients (APIs) .. 4
 Description and Pharmacopeia Status .. 4
 Polymorphic Forms ... 4
 Cross Contamination ... 5
 Chemical Structure and Molecular Formula ... 5
 Physical Properties .. 5
 Chemical Incompatibility ... 6
Characterization by Various Techniques .. 8
 X-Ray Diffraction (XRD) Study .. 8
 FTIR Spectrum of INH .. 9
 Mass Spectrum .. 10
 Nuclear Magnetic Resonance Spectrum ... 11
 Ultra-violet (UV) and Visible Spectrum ... 13
Analyses by Reverse Phase (RP) High-performance Liquid Chromatography (HPLC) Methods .. 14
 Availability of Pharmacopeial Standards ... 15
 Impurities with Their Availability ... 15
 Stability .. 16
Assay in Biological Samples .. 18
Bioequivalence (BE) and Biowaiver .. 21
Conclusion .. 22
References ... 23
Acknowledgments

This report was prepared in collaboration with Raj Suryanarayanan from the Department of Pharmaceutics, College of Pharmacy, University of Minnesota, with technical guidance and oversight from Nikhil Shah, PQM Senior Manager, Manufacturing Services.

The authors also thank Cheri Vincent, Thomas Chiang, Alison Collins, Lisa Ludeman, and Tobey Busch, from USAID for their guidance. Gratitude is also due to the reviewers and editorial staff who provided valuable comments during the development of this document.
Executive Summary

Rifapentine (RPT), an antitubercular agent marketed under the brand name of Priftin® (by Sanofi Aventis US LLC) in the US, is used in combination with other anti-tuberculosis (anti-TB) drugs for the treatment of active pulmonary tuberculosis (TB) caused by Mycobacterium tuberculosis in patients 12 years of age and older. Specifically, the combination of RPT and isoniazid (INH) is indicated for the treatment of latent tuberculosis infection (LTBI) in patients 2 years of age and older at high risk of progression to TB disease.\(^1\) INH was first approved in the US in 1952 (New Drug Application (NDA)# 008678, Sandoz).\(^2\) Currently, multiple manufacturers provide generic isoniazid tablets in the US market.

In the past decade, several clinical trials have established the effectiveness of the RPT/INH combination regimen in reducing the treatment duration for TB,\(^3\)-\(^6\) although there is no marketed fixed dose combination (FDC) of RPT and INH. An FDC (300 mg RPT and 300 mg INH) has appeared in the WHO list of pre-qualified Finished Pharmaceutical Products (FPPs)\(^7\) and another FDC (150 mg RPT and 150 mg INH) is in clinical trials in children.\(^8\) Currently, there are no unexpired patents or exclusivities for RPT-based and INH-based products in US Food and Drug Administration’s “Orange Book” database.\(^9\)-\(^10\)

This product information report aims to provide expert scientific analyses of the analytical, formulation, and manufacturing aspects of (Rifapentine / Isoniazid) RPT/INH FDC. Due to the lack of such a combination in the market, conclusions have been drawn based upon the available literature for individual molecules and their possible interactions. Moreover, since a PIR (Product Information Report) already exists for RPT, only the highlights are provided in this document.\(^11\) It is expected that this PIR will provide critical information and guidance to manufacturers planning to develop this FDC.
Key Manufacturing Challenges

The table below summarizes the key challenges associated with the manufacturing of RPT/INH FDC:

<table>
<thead>
<tr>
<th>Challenges</th>
<th>Description of the challenges and solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product development (formulation and analytical)</td>
<td>INH is known to accelerate the decomposition of RPT and the potential degradation product is isonicotynl hydrazone. Such an interaction will not only tend to lower the potency of the two drug substances, but could also affect the oral bioavailability. No direct studies are available in literature that describe the role of this interaction on the bioavailability of RPT. However, such studies are available for rifampin, which is structurally similar to RPT. Hence, the formulation manufacturing process needs to be designed to prevent any interaction of the two drug substances during product manufacturing or storage. The potential interactions in vivo, before absorption into systemic circulation, also warrant consideration. Finally, the development and validation of the stability indicating assay method to enable characterization of the RPT, INH, and their impurities can also be challenging. Please refer to the section on Chemical Incompatibility for additional discussion.</td>
</tr>
<tr>
<td>Product development (quality specification)</td>
<td>Pharmacopeial monographs exist for INH and INH tablets, but not for RPT. The availability of several generic formulations of INH suggest ready accessibility of approved generic sources of INH active pharmaceutical ingredient (API). Multiple DMF approved vendors were identified for INH, but none were identified for RPT. Thus, API sourcing from qualified vendors could be a challenge.</td>
</tr>
<tr>
<td>Bioequivalence (BE) and Biowaiver</td>
<td>Biowaiver monographs have been proposed for immediate release isoniazid tablets. However, owing to its potential of interaction with excipients and other APIs, including RPT, a biowaiver is not expected for the RPT/INH FDC. Further, there is no specific guidance on the BE requirements of RPT and there is no approved FDC of RPT/INH. Hence, the manufacturers need to establish the BE of each API with that of concurrently administered separate single ingredient preparations. Refer to the section on Bioequivalence and Biowaiver for additional discussion.</td>
</tr>
<tr>
<td>Inherent properties</td>
<td>RPT is a red-colored dye and the equipment cleaning and cleaning validation can be a challenge. Hence, the product may require dedicated equipment and rooms, thereby adding to the financial, technical, and operational challenges. Refer the PIR of RPT for additional discussion.</td>
</tr>
</tbody>
</table>
Introduction

RPT is an antitubercular agent marketed under the brand name Priftin® by Sanofi in the US. Priftin was approved by the US Food and Drug Administration (FDA) for use in combination with other anti-TB drugs for the treatment of active pulmonary TB caused by Mycobacterium tuberculosis in patients 12 years of age and older.\(^1\)\(^{,}\)\(^{16}\) In November 2014, a supplementary new drug application was approved by FDA for the treatment of LTBI caused by M. tuberculosis in combination with INH in patients 2 years of age and older at high risk of progression to TB disease.\(^16\) Thereafter, several clinical trials and reports have further established the combination regimens of RPT and INH, popularly known as 3HP (12 weeks of RPT and INH taken together once a week) and 1HP (one month of RPT and INH taken together once a day) as shorter treatment alternatives to the older standard of care.\(^4\)\(^{,}\)\(^{6}\)

In the 3HP regimen, adults are administered 900 mg of RPT, 900 mg of INH and a vitamin B6 supplement. Similarly, in the 1HP regimen, adults are administered 600 mg of RPT, 300 mg of INH, and vitamin B6.\(^8\)\(^{,}\)\(^{17}\) As per our current knowledge, RPT/INH FDC is not available in the market. However, a recent report suggested that a water dispersible 3HP FDC tablet (150 mg RPT and 150 mg INH) for children (manufactured by Sanofi) is undergoing a clinical trial.\(^8\) Additionally, a film coated tablet (300 mg RPT and 300 mg INH) has been listed in the WHO list of pre-qualified Finished Pharmaceutical Products (FPPs).\(^7\)
Active Pharmaceutical Ingredients (APIs)

Description and Pharmacopeia Status

RPT is available as a practically odorless, brick-red to reddish brown crystalline solid or powder. RPT has poor aqueous solubility. RPT is not official in USP, the European Pharmacopeia (Ph. Eur.), British Pharmacopeia (BP), and the International Pharmacopeia. INH is available as colorless or white crystals, or as white, crystalline powder. It is freely soluble in water, sparingly soluble in alcohol, slightly soluble in chloroform, and very slightly soluble in ether. It is odorless and is slowly affected by exposure to air and light. The API is official in USP, Ph. Eur., and the International Pharmacopeia.

We could not locate any DMF holders associated with the RPT API in the FDA database. However, three active DMF approved vendors were identified for INH (Table 1).

Table 1. Active DMFs for INH API as of March 31, 2019

<table>
<thead>
<tr>
<th>DMF#</th>
<th>Type</th>
<th>Submit date</th>
<th>Holder</th>
<th>Subject (Title)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4772</td>
<td>II</td>
<td>12/7/1982</td>
<td>Yuki Gosei Kogyo Co Ltd</td>
<td>Isoniazid bulk form</td>
</tr>
<tr>
<td>16235</td>
<td>II</td>
<td>11/5/2002</td>
<td>Yangzhou Pharmaceutical Co Ltd</td>
<td>Isoniazid</td>
</tr>
<tr>
<td>21322</td>
<td>II</td>
<td>2/7/2008</td>
<td>Calyx Chemicals and Pharmaceuticals Ltd</td>
<td>Isoniazid</td>
</tr>
</tbody>
</table>

Polymorphic Forms

INH is not known to exhibit polymorphism. The crystal structure of INH is reported. RPT can exist in different solid forms, including solvates, crystalline chloride and bromide salts, and an amorphous bromide salt form. The crystal structure of methanol solvate of RPT is reported, while INH is not known to form stoichiometric hydrates or solvates.
Cross Contamination

As highlighted in the PIR of RPT, the administration is reported to cause discoloration of human excreta and eyes.11,23 Its intense brick-red color makes cleaning difficult. Thus, it is recommended to manufacture products containing RPT using dedicated equipment and rooms. Refer to the PIR11 of RPT for additional discussion.

Chemical Structure and Molecular Formula

<table>
<thead>
<tr>
<th></th>
<th>Rifapentine (RPT)</th>
<th>Isoniazid (INH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular formula</td>
<td>C\textsubscript{47}H\textsubscript{64}N\textsubscript{4}O\textsubscript{12}</td>
<td>C\textsubscript{6}H\textsubscript{7}N\textsubscript{3}O</td>
</tr>
<tr>
<td>Molecular weight</td>
<td>877.031 g/mol</td>
<td>137.139 g/mol</td>
</tr>
<tr>
<td>Chemical structure</td>
<td>![Chemical structure image]</td>
<td>![Chemical structure image]</td>
</tr>
</tbody>
</table>

Physical Properties

The physical properties of INH have been compiled in the following section. For the detailed physical properties of RPT, refer to its PIR.11

Solubility

INH is freely soluble in water.19 One part of INH is soluble in 8 parts of water and in 40 parts of ethanol.24 The solubility of INH, as a function of temperature in different organic solvents,
namely ethanol, methanol, ethyl acetate, and acetone was reported by Heryantu et al. and the results are presented in Figure 1.25

Figure 1. Mole fraction solubility (x_1) of isoniazid in different solvents.

Other Physicochemical Properties

The logP of INH is 1.1 in octanol/buffer pH 7.4 system.26 The calculated log P using ClogP1 program (version 3.0, Biobyte Corp, Claremont, CA) is 0.64.13, 27 Three pKₐ values have been reported for INH at 20°C: i) 1.8 (range: 1.4–2.2) for the pyridine nitrogen; ii) 3.5 (range: 3.5–3.9) for the hydrazide nitrogen; and iii) 10.8 (range: 9.8–11.2) for the deprotonation of the hydrazide group to a mesomerism stabilized anion.13, 26 The compound melts over the temperature range of 170-174 °C.24

Chemical Incompatibility

RPT and INH are reported to interact and the reaction mechanism is given in Figure 2. The main degradation product of the interaction is expected to be isonicotinyl hydrazone.
Figure 2. Mechanistic scheme for the interaction of RPT with INH in acidic conditions

The acidic nature of INH further accelerates this decomposition reaction. Thus, RPT drug substance should not be in direct contact with INH. In addition to lowering the potency of RPT, this interaction is also expected to lower the oral bioavailability of RPT when such a product is administered orally. As a result, creating a barrier that prevents direct interaction in the formulation as well as in vivo, before absorption into systemic circulation is a major formulation challenge for fixed dose combination products containing the two drug substances together. Similar incompatibilities have also been reported for rifampicin and INH. Further, the toxicological profile of the degradation product, isonicotinyl hydrazone, has not been established.
Characterization by Various Techniques

The characterization of INH has been compiled in the following section. For detailed characterization of RPT, Refer to its PIR.11

X-Ray Diffraction (XRD) Study

The overlay of calculated XRD patterns of INH and RPT methanol solvate (ref codes INICAC01 and MAFLAI, respectively in Cambridge Structure Database) is presented in Figure 3 (CuK\(\alpha\) radiation). INH is characterized by peaks at 9.8°, 12.1°, 14.4°, 15.7°, 16.8°, 19.7°, 24.2°, 25.5°, 26.4°, and 27.6° 20. The characteristic peaks of RPT methanol solvate were at 7.8°, 8.9°, 9.7°, 12.4°, 13.6°, and 19.9° 20. The experimental powder XRD patterns for INH and RPT methanol solvate are presented in Figure 4.

Figure 3. Overlay of calculated XRD patterns of isoniazid and rifapentine methanol solvate.
Active Pharmaceutical Ingredients (APIs)

Figure 4. Powder XRD patterns of a) isoniazid and b) rifapentine methanol solvate

(Figure reproduced and modified from Banik et al.31 and Zhou et al.18)

FTIR Spectrum of INH

The FTIR spectrum of isoniazid is shown in Figure 5. INH shows three medium intensity bands at 3304, 3209, and 3171 cm\(^{-1}\) corresponding to the N–H stretching vibrations. A strong band is observed at 1668 cm\(^{-1}\), due to the C=O (carboxyl) stretching vibration. Peaks at 1635 cm\(^{-1}\) and 845 cm\(^{-1}\) are attributed to the deformation of the NH\(_2\) and NH\(_2\) wagging, respectively. A medium intensity band at 1335 cm\(^{-1}\) is attributed to the C–N stretching vibration. The ring breathing mode is assigned at 996 cm\(^{-1}\).32

Figure 5. The FT-IR solid phase spectrum of isoniazid.

(Reproduced from Yilmaz et al.32)
Mass Spectrum

Figure 6 shows the mass spectral pattern of INH and the structures of major fragments are shown in Figure 7. The major peaks and the possible fragment attribution are presented in Table 1. The data was collected under the following experimental conditions: source temperature of 200 °C, sample temperature of 140 °C, and reservoir of 75 eV.33

Figure 6. Mass spectrum of isoniazid (reproduced from SDBS database)33

![Mass Spectrum of Isoniazid](image)

Figure 7. Chemical structures of the major fragments of isoniazid (reproduced from SDBS database).33

![Chemical Structures of Major Fragments](image)
Table 2. Main fragment attribution of isoniazid in mass spectrum

<table>
<thead>
<tr>
<th>m/z</th>
<th>Intensity</th>
<th>Possible peak attribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>52.1</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>98.8</td>
<td>–CONHNH$_3$ removed</td>
</tr>
<tr>
<td>106</td>
<td>100</td>
<td>–NHNH$_2$ removed</td>
</tr>
<tr>
<td>137</td>
<td>58.2</td>
<td>Whole molecule</td>
</tr>
</tbody>
</table>

Nuclear Magnetic Resonance Spectrum

The 13C-NMR spectrum of INH (0.13 g: 0.8 mL) in DMSO-d_6 (Di Methyl Sulfoxide) is presented in Figure 8. The chemical shifts and their attribution are shown in Figure 9.33

Figure 8. 13C-NMR spectrum (15 MHz) of isoniazid.

The chemical shift is with respect to tetramethylsilane in DMSO.33
Figure 9. Chemical shift attribution of isoniazid (reproduced from SDBS database) in C-NMR13, 33

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
ppm & Int. & Assign. \\
\hline
163.95 & 231 & 1 \\
150.16 & 706 & 2 \\
140.27 & 327 & 3 \\
121.90 & 1000 & 4 \\
\hline
\end{tabular}
\end{table}

The 1H-NMR spectrum of INH (0.038 g: 0.5 ml) in DMSO-d\textsubscript{6} is presented in Figure 10. The chemical shifts and their attribution are showed in Figure 11.

Figure 10. Proton NMR spectrum (90 MHz) of isoniazid in DMSO.

The chemical shift is with respect to tetramethylsilane in DMSO.33
Figure 11. Chemical shift attribution of isoniazid in 1H-NMR (reproduced from SDBS database)33

![Chemical shift attribution of isoniazid in 1H-NMR](image)

<table>
<thead>
<tr>
<th>Assign</th>
<th>Shift (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10.10</td>
</tr>
<tr>
<td>B</td>
<td>8.721</td>
</tr>
<tr>
<td>C</td>
<td>7.753</td>
</tr>
<tr>
<td>D</td>
<td>4.64</td>
</tr>
</tbody>
</table>

Ultra-violet (UV) and Visible Spectrum

The UV-visible spectrophotometric based method has been used for rapid quantification of INH.34 The absorption spectra of INH in (a) HCl 0.012 M and (b) phosphate buffer solution pH 7.4 are presented in Figure 12. The UV spectrum of INH in dilute HCl (0.01 N) exhibits two maxima at 213 nm and 267 nm.26

Figure 12. Absorption spectra of isoniazid (20 μg/mL) in (a) HCl 0.012 M and (b) phosphate buffer solution pH 7.4.

![Absorption spectra of isoniazid (20 μg/mL)](image)
Analyses by Reverse Phase (RP) High-performance Liquid Chromatography (HPLC) Methods

An HPLC-UV method was developed for the separation of RPT and INH and was utilized to study the of interaction between the two drugs.\(^{28}\) The HPLC method utilized a C\(_{18}\) column (250 mm x 4.6 mm, particle size 5 \(\mu\)m) and a mobile phase consisting of 65% methanol and 35% 0.02 M phosphate buffer, pH 5.2. The flow rate was 1 mL/min and the detection wavelength was 238 nm. The retention times of RPT and INH were 18.55 min and 3.10 min, respectively. The method was validated for linearity, range, specificity, selectivity, accuracy, and precision (intra-day, inter-day and inter-column).

Additionally, INH is frequently co-administered with other first-line anti-TB drugs, including pyrazinamide, ethambutol, and rifampicin. Among these drugs, rifampicin and RPT are structural analogs belonging to the rifamycin class of anti-TB drugs. Hence, compilation of HPLC methods capable of separating INH and rifampicin may be a good starting point for developing a method for RPT/INH FDC. These methods have been summarized in Table 3. A detailed review of analytical methods for INH and RPT are also available.\(^{11, 35}\)

Table 3. HPLC-UV methods for isoniazid in combination with rifampicin and other anti-tubercular drugs in drug products

<table>
<thead>
<tr>
<th>Analytes</th>
<th>Mobile Phase</th>
<th>Column</th>
<th>Drug Product</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isoniazid, pyrazinamide, and rifampicin</td>
<td>Isocratic: ethanol, water, chloroform and acetonitrile (55:40:4:1, v/v/v/v)</td>
<td>Column C(_{18}) YMC-ODS (150 × 4.6 mm; 5.0 (\mu)m)</td>
<td>Tablets</td>
<td>36</td>
</tr>
<tr>
<td>Isoniazid, pyrazinamide, and rifampicin</td>
<td>Gradient: (A) acetonitrile; (B) 50 mM phosphate buffer pH 3.5 3% A: 97% B (v/v) 5.0 min 50% A: 50% B (v/v) 25 min 3% A: 97% B (v/v) 10 min</td>
<td>Column C(_{18}) Lichrospher 100 RP-18 (250 × 4.0 mm; 5 (\mu)m)</td>
<td>Tablets</td>
<td>37</td>
</tr>
<tr>
<td>Isoniazid, pyridoxine,</td>
<td>Isocratic: acetonitrile and tetrabutylammonium hydroxide 0.0002</td>
<td>Column C(_{18}) mBondapak</td>
<td>Tablets</td>
<td>38</td>
</tr>
</tbody>
</table>
Analyses by Reverse Phase (RP) High-performance Liquid Chromatography (HPLC) Methods

<table>
<thead>
<tr>
<th>Substance</th>
<th>Mobile Phase Details</th>
<th>Column Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>pyrazinamide and rifampicin</td>
<td>M (42.5:57.5, v/v; pH 3.10 adjusted with H3PO4)</td>
<td>(250 × 4.6 mm; 10 μm)</td>
</tr>
<tr>
<td>Isoniazid, pyridoxine, pyrazinamide, and rifampicin</td>
<td>Gradient: (A) acetonitrile; (B) potassium dihydrogen phosphate buffer 15 mmol/L of pH adjusted to 4.0 with orthophosphoric acid 11% A: 89% B (v/v) 4.5 min 50% A: 50% B (v/v) 15.5 min</td>
<td>Column C18 Phenomenex Luna (250 × 4.6 mm; 5 μm)</td>
</tr>
<tr>
<td>Isoniazid, ethambutol, pyrazinamide, and rifampicin</td>
<td>Gradient: (A) acetonitrile; (B) potassium dihydrogen phosphate buffer (8 mM; pH 6.8) 10% A: 90% B (v/v) 0 min 60% A: 40% B (v/v) 18 min 60% A: 40% B (v/v) 6.0 min</td>
<td>Column C18 Phenomenex Luna (250 × 4.6 mm; 5 μm)</td>
</tr>
<tr>
<td>Isoniazid, ethambutol, pyrazinamide, and rifampicin</td>
<td>Gradient: (A) 20 mM monobasic sodium phosphate buffer with 0.2% triethylamine (pH 7.0) and acetonitrile (96:4, v/v); (B) acetonitrile 100% A: 0% B (v/v) 5 min 48% A: 52% B (v/v) 7 min 100% A: 0% B (v/v) 5 min</td>
<td>Column C18 Purosphere Star RP-18 (250 × 4.6 mm; 5 μm)</td>
</tr>
</tbody>
</table>

Availability of Pharmacopeial Standards

No pharmacopeial monograph has been reported for the RPT so far. However, INH reference standard monographs exist in USP and Ph. Eur.

Impurities with Their Availability

Details of the impurities in RPT were provided in the PIR11 of RPT. The USP monograph of INH lists four impurities (Table 4), each with acceptance criterion of not more than 0.1%.19
Table 4. Chemical structures of specified impurities of Isoniazid

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Impurity name</th>
<th>Chemical Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Isoniacin (Isonicotinic acid)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Isonicotinamide</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Picolinohydrazide (2-Isoniazid)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Isonicotinonitrile (4-Cyanopyridine)</td>
<td></td>
</tr>
</tbody>
</table>

"Impurity reference standards" are commercially available from many suppliers including Sigma Aldrich, TCI Chemicals Pvt. Ltd, and Tokyo Chemical Industry Co., Ltd.

Stability

Stability of RPT and INH in Combination in Solution

Decomposition of RPT and INH was evaluated in acidic pH conditions, using a validated HPLC method. It was established that the maximum decomposition (RPT and INH degraded by ~30% and ~9%, respectively) occurred at pH 2. RPT was found to convert to 3-formylrifmycin in acidic conditions, which reacted further with INH to form isonicotinyl hydrazone. The shape of the pH-rate profile was similar to that observed for combination of rifampin and INH, suggesting similar nature of interaction between the two APIs.\(^{28}\)
RPT Alone in Solution
RPT was found to be most stable near neutral pH. Under alkaline conditions (pH of 7.5 to 9.0), RPT oxidized to form rifapentine-quinone. Addition of ascorbic acid reduced this oxidation reaction.

INH Alone in Solution
INH in solution is reported to be prone to oxidation. The presence of aldehydes and ketones, such as sugars, and metal ions enhance its degradation. Metal chelating agents are reported to prevent its degradation in neutral and alkaline media.
Assay in Biological Samples

Recently, Lee et al. developed an LC-MS based method for quantification of INH and RPT along with their metabolites, acetyl-INH and desacetyl-RPT, in human serum. This method utilized a C18 column, ZORBAX Eclipse Plus (2.1 × 100 mm; 1.8 μm). Deuterium isotopes of the analytes were used as internal standards. The mobile phase was composed of ammonium acetate (5 mM; solvent A) and 0.1% formic acid in 90% acetonitrile (solvent B). Separation was achieved by using a linear gradient (solvent B increased from 1% to 95%) for 6 min followed by an isocratic elution (with 95% solvent B) for 6-7 min, at a flow rate of 0.4 mL/min. The mass spectrometric analysis was performed using the positive electrospray ionization mode with the following parameters: dry gas temperature of 350 °C, dry gas flow rate of 11 L/min, nebulizer pressure of 50 psi, sheath gas temperature of 350 °C, sheath gas flow rate of 11 L/min, nozzle voltage of 0 V, and capillary voltage of 3500 V.

Additionally, several methods have been reported to quantify INH following the administration of a combination of anti-TB drugs (Table 5). Many of techniques enabled simultaneous quantification of multiple analytes. Two of these methods, reported by Panchagnula et al. and Xu et al., utilized RPT as the internal standard, suggesting adequate resolution between INH and RPT.
Table 5. HPLC methods for assay determination of isoniazid in combination with rifampicin and other anti-tubercular drugs in biological samples

<table>
<thead>
<tr>
<th>Method</th>
<th>Analytes</th>
<th>Internal standard(s)</th>
<th>Mobile Phase</th>
<th>Column</th>
<th>Matrices</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPLC-UV</td>
<td>Isoniazid, pyrazinamide, and rifampicin</td>
<td>None</td>
<td>Isocratic: ethanol, water, chloroform and acetonitrile (55:40:4:1, v/v/v/v)</td>
<td>Column C18 YMC-ODS (150 × 4.6 mm; 5.0 μm)</td>
<td>Human serum</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Isoniazid, acetylisoniazid, pyrazinamide, and rifampicin</td>
<td>Terramycin</td>
<td>Gradient: (A) methanol; (B) acetonitrile; (C) 20 mM 1-heptanesulfonic acid sodium pH 2.5 10% A: 8% B: 82% C (v/v/v) 6 min 0% A: 65% B: 35% C (v/v/v) 13 min 10% A: 8% B: 82% C (v/v) 5.5 min</td>
<td>Column C12 Synergi Max-RP (250 × 4.6 mm; 4 μm)</td>
<td>Human plasma</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Isoniazid, pyrazinamide, and rifampicin</td>
<td>Guanosine and phenacetine</td>
<td>Isocratic: 50 mM phosphate buffer pH 4.2 and acetonitrile 0.25% (v/v/v)</td>
<td>Column C18 Purosphere LichroCart RP-18 (125 × 4.6 mm; 5 μm)</td>
<td>Human plasma and cerebrospinal fluid</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Rifampicin in presence of isoniazid and pyrazinamide</td>
<td>Rifapentine</td>
<td>Isocratic: methanol, sodium phosphate buffer (pH 5.2; 0.01 M) (65:35, v/v)</td>
<td>Column C18 Nova-Pak (250 × 4 mm; 4 μm)</td>
<td>Human plasma and urine</td>
<td>43</td>
</tr>
</tbody>
</table>
Product Information Report: Rifapentine-Isoniazid FDC

<table>
<thead>
<tr>
<th>Method</th>
<th>Analytes</th>
<th>Internal standard(s)</th>
<th>Mobile Phase</th>
<th>Column</th>
<th>Matrices</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPLC-MS/MS</td>
<td>Isoniazid, ethambutol, pyrazinamide, and rifampicin</td>
<td>Rifabutin and 6-aminonicotinic acid</td>
<td>Gradient: (A) methanol and formic acid 0.3%; (B) water and formic acid 0.3%</td>
<td>Column C18 Hydrosphere</td>
<td>Human serum</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60% A: 40% B (v/v) 1.8 min</td>
<td>(50 × 2.0 mm; 3 μm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80% A: 20% B (v/v) 0.2 min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60% A: 40% B (v/v) 2.0 min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isoniazid, rifampicin, and levofloxacin</td>
<td>Gatifloxacin</td>
<td>Gradient: (A) water and formic acid 0.05%; (B) methanol 93% A: 7% B (v/v) 4.5 min</td>
<td>Column C4 Hydrosphere</td>
<td>Mouse plasma and tissues</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>88% A: 12% B (v/v) 4.5 min</td>
<td>(250 × 4.6 mm; 5 μm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10% A: 90% B (v/v) 4 min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>93% A: 7% B (v/v) 3.5 min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isoniazid, ethambutol, pyrazinamide, and rifampicin</td>
<td>Rifapentine</td>
<td>Isocratic: acetonitrile and water containing 0.1% formic acid (60:40, v/v)</td>
<td>Column C18 Agilent Zorbax SB (50 × 2.1 mm; 1.8 μm)</td>
<td>Human plasma</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Isoniazid, acetylisoniazid, isonicotinic acid, and rifampicin</td>
<td>Deuterium labelled analytes</td>
<td>Gradient: (A) 5 mM ammonium acetate pH 6.7; (B) 90% acetonitrile in water containing 0.1% formic acid 100% A: % B (v/v) 1 min</td>
<td>Column C18 Agilent Zorbax SB-Aq (50 × 4.6 mm; 5 mm)</td>
<td>Human plasma</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>97% A: 3% B (v/v) 2 min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50% A: 50% B (v/v) 0.1 min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30% A: 70% B (v/v) 1.9 min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5% A: 95% B (v/v) 1 min</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bioequivalence (BE) and Biowaiver

Generally, the purpose of an in vivo BE study involving an FDC drug product is to compare the rate and extent of absorption of each API in the FDC to the rate and extent of absorption of each API administered concurrently in separate single-ingredient preparations. The US FDA draft guidance on BABE (bioavailability/bioequivalence) studies recommends that the following studies be conducted for an FDC drug product:

- A two-treatment, single-dose, fasting study of the combination drug product versus single-ingredient drug products administered concurrently as a single treatment or an approved combination product containing the same active ingredients. This study should use the highest strength of the combination product with matching doses of individual drug products.

Also, it should be noted that BE studies for an FDC product should include the measurement of systemic concentrations of each API. The confidence interval approach should be applied to each measured entity of the FDC and its reference product.

INH is freely soluble in water with rapid dissolution. So, in vivo dissolution was not expected to be a rate limiting factor for its absorption, as long as the dosage form meets the in vitro dissolution requirements. Biowaiver monographs have been proposed for immediate release tablets of INH, containing INH as the sole API. However, INH can interact with saccharides like lactose and this can impact its bioavailability. The potential of INH to interact with other APIs, like rifampicin and RPT is also established. Hence, a biowaiver request is not expected to be granted for the RPT/INH FDC. There is no specific guidance on the BE requirements of RPT in addition to the absence of its absolute bioavailability specific BCS classification. The market also does not have an approved FDC of RPT/INH available. Hence, the manufacturers need to establish the BE of each API with that of concurrently administered separate single ingredient preparations. WHO released a BE guidance for the design of bioequivalence study of INH/Rifampicin, which can be a good starting point for designing BE studies for RPT/INH FDC.
The combination of RPT and INH is indicated for the treatment of LTBI in patients, 2 years of age and older at high risk of progression to TB disease and has been proven to be more efficacious than INH alone in reducing treatment duration. However, there is no FDC formulation containing both the APIs available in the market. There are reports revealing such formulations in the pipeline. The present product information report attempts to provide background information required to develop an RPT/INH FDC formulation. The chemical incompatibility between the two APIs seems to be a major challenge for developing such an FDC. The formulation development strategy needs to be cautiously chosen to prevent interactions between RPT and INH during manufacturing and storage. Due to the potential interaction affecting the oral bioavailability of RPT/INH, a bio-waiver will likely not be approved for an FDC. Further, because RPT is a red-colored dye, this product may necessitate dedicated manufacturing equipment and areas. Development of analytical method does not seem to be problematic because multiple chromatographic methods are available for assays of drug content formulations containing INH, rifampin (a structural analog of RPT), and other anti-TB drugs.
References

Product Information Report: Rifapentine-Isoniazid FDC

